Free Access Week-  Data Engineering + BI
Data engineering and BI courses are free!
Free AI Access Week from June 2-8

shannon (version 0.2.0)

Exponential distribution: Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the exponential distribution

Description

Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the exponential distribution.

Usage

Se_exp(alpha)
re_exp(alpha, delta)
hce_exp(alpha, delta)
ae_exp(alpha, delta)

Value

The functions Se_exp, re_exp, hce_exp, and ae_exp provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the exponential distribution and δ.

Arguments

alpha

The strictly positive scale parameter of the exponential distribution (α>0).

delta

The strictly positive parameter (δ>0) and (δ1).

Author

Muhammad Imran, Christophe Chesneau and Farrukh Jamal

R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.

Details

The following is the probability density function of the exponential distribution: f(x)=αeαx, where x>0 and α>0.

References

Balakrishnan, K. (2019). Exponential distribution: theory, methods and applications. Routledge.

Singh, A. K. (1997). The exponential distribution-theory, methods and applications, Technometrics, 39(3), 341-341.

Arimoto, S. (1971). Information-theoretical considerations on estimation problems. Inf. Control, 19, 181–194.

See Also

re_chi, re_gamma, re_wei

Examples

Run this code
Se_exp(0.2)
delta <- c(1.5, 2, 3)
re_exp(0.2, delta)
hce_exp(0.2, delta)
ae_exp(0.2, delta)

Run the code above in your browser using DataLab